MAY 14-16, 2019

EASTERN STATES EXPOSITION WEST SPRINGFIELD, MA easteconline.com

Official Media Partner

Tooling Life in the Age of Regulation — Meeting both tooling efficiency and regulatory demand — Life after chlorinated paraffins

Hoon Kim, Senior Principal R&D Scientist, BASF-Chemetall

Castec[®] BASF – We create chemistry

- Our chemistry is used in almost all industries
- We combine economic success, social responsibility and environmental protection
- Sales 2017: €64,457 million
- EBIT 2017: €8,522 million
- Employees (as of December 31, 2017): 115,490
- 6 Verbund sites and 347 other production sites

BASF Segments at a glance — Chemetall's position

Chemicals

Petrochemicals Monomers Intermediates

Performance Products

Dispersions & Pigments Care Chemicals Nutrition & Health Performance Chemicals

Materials & Solutions

Catalysts

Construction Chemicals

Coatings

Performance Materials

Agricultural Solutions

Crop Protection

Oil & Gas

,

BASF Coatings Division at a glance

OEM coatings

E-coat Primer Basecoat Clearcoat

Refinish coatings

Sealer Primer Basecoat Clearcoat

Decorative paints

For interior and exterior use: Wall Wood Metal Specific use

Surface Treatment

Anodizing Cleaners Coil Coatings Conversion Coatings & Thin Film Glass Processing Products Lubricants Metalworking Fluids Non-Destructive Testing Maintenance Products Paint Detack & Paint Strippers

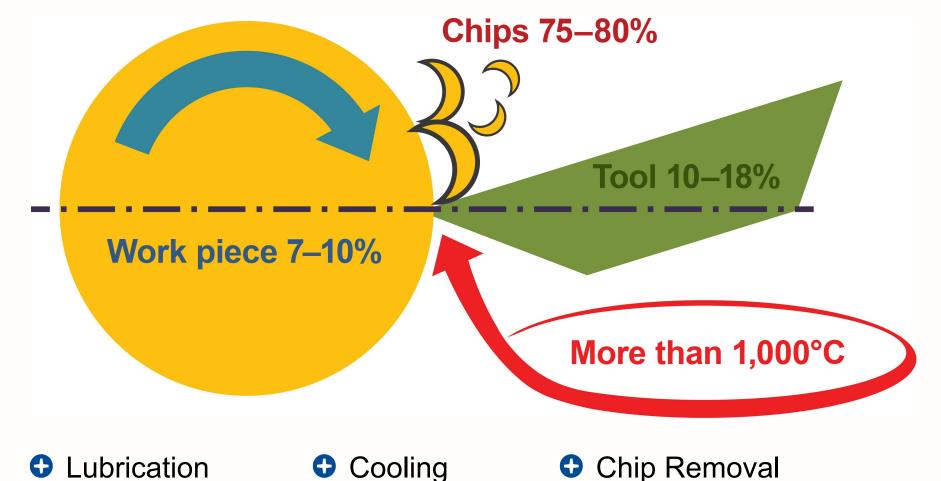
Chemetall at a glance

We are the Surface Treatment global business unit of the Coatings division of BASF, operating under the Chemetall brand, a leading supplier of applied surface treatments and services for metal, plastic, and glass substrates in a vast range of industries and end markets.

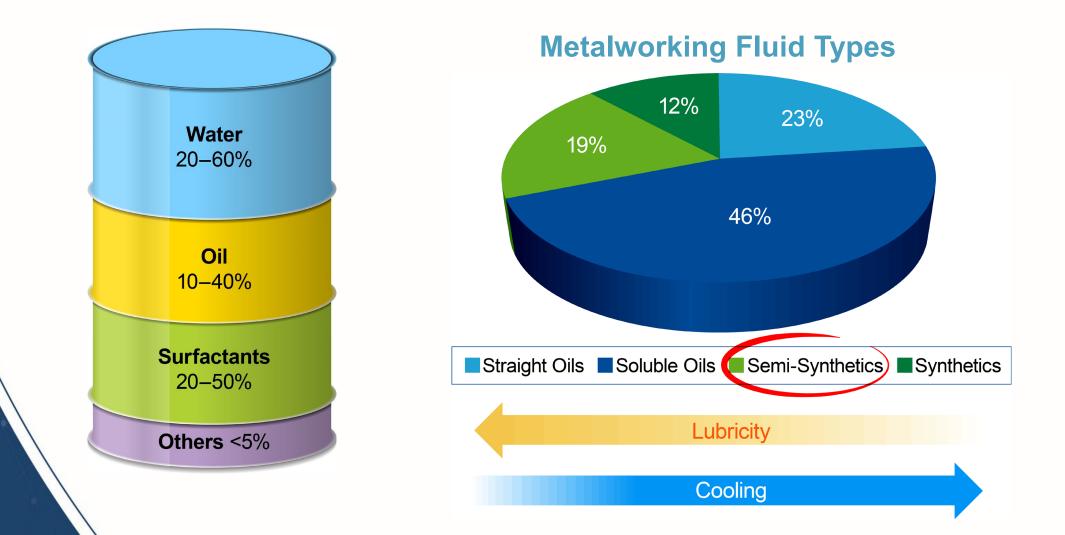
Headquarters: Frankfurt am Main Germany

- Facilities: 40+ worldwide*
- Production sites: 20+ on all continents*

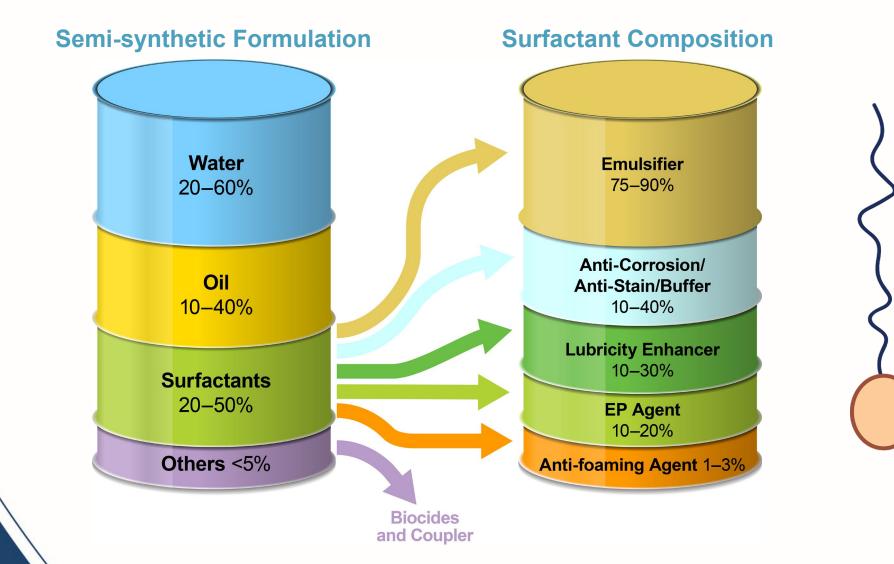
7


- Metalworking Fluids Overview
- 2) Semi-Synthetic formulation
- Lubricity Enhancer vs. EP Agent
- 4) New EP Technology: Chlorinated Paraffin Alternative
- 5) Summary and Acknowledgement

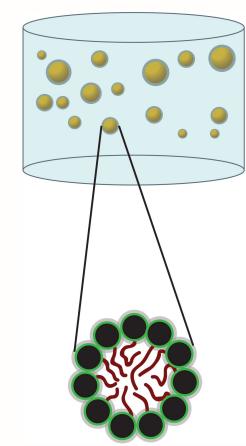
Hard Polymeric Layer **Metal Oxide** Metal

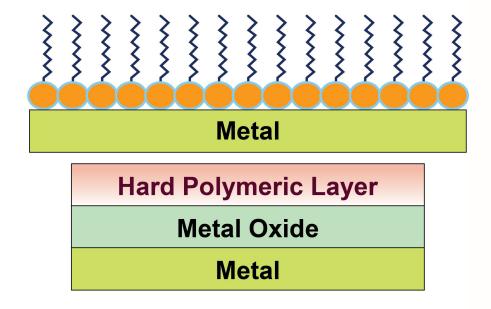

Metalworking Fluids Overview Heat!!! How to minimize.

8



Semi-synthetic Metalworking Fluids


Semi-synthetic Metalworking Fluids

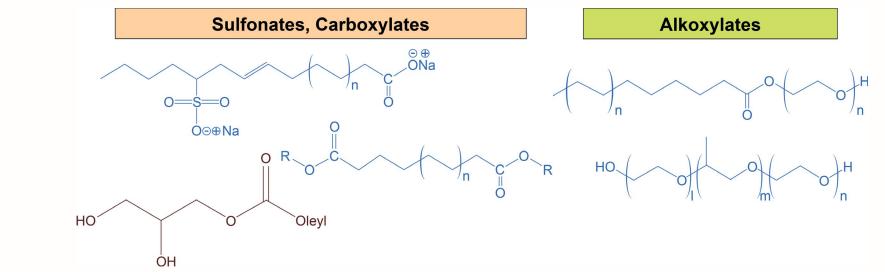

Major issues in Metalworking Fluids

Different interfaces at different locations: Water/Oil, Metalworking Fluids/Metal

Emulsion Stability

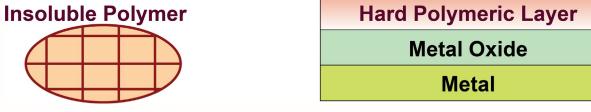
- 1) Lubricity
- 2) Corrosion
- 3) Microbial Growth

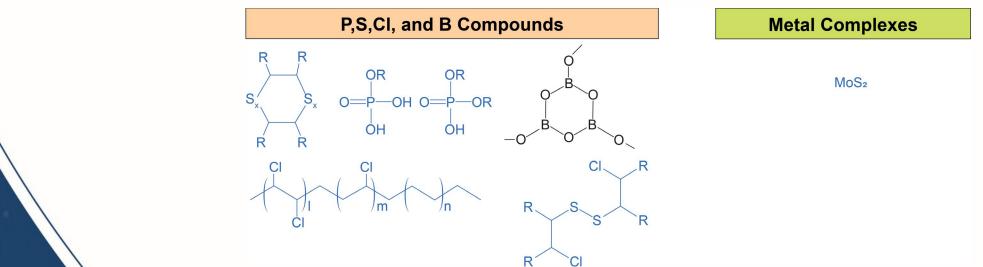
Defoaming/Anti-foaming: Air/Fluid Interface


Lubricity Enhancers

Lubricity Enhancer Structure, Function, and Chemistry

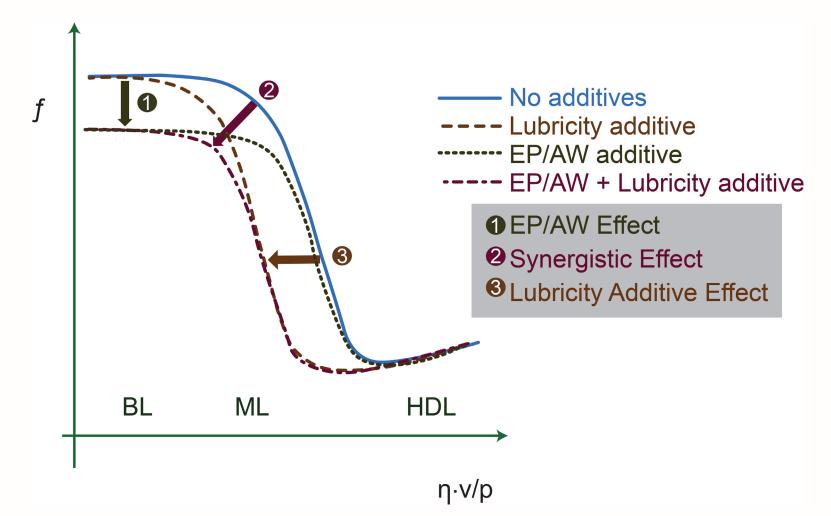
- Form slippery deposits layer by Physi-sorption
- Reduce friction/wear under low temperature mild load conditions
- Reduce EP content

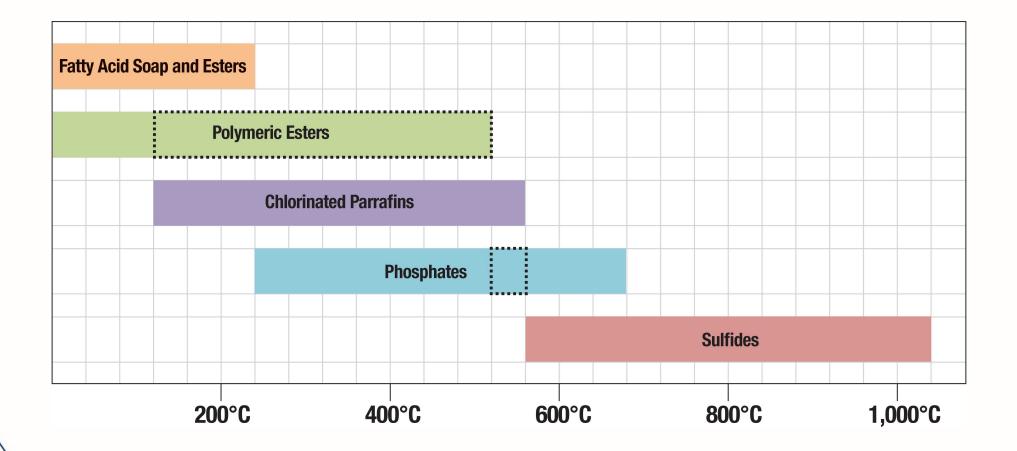

Dominant chemistries:


Antiwear/EP Agents

Extreme Pressure Agent Structure, Function, and Chemistry

- P, S, CI, and B containing compounds
- Form Chemisorbed Hard/Polar Polymeric Film
- Reduce Friction/Wear in boundary lubrication regime

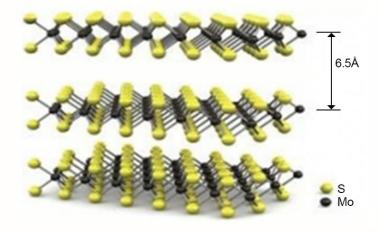

Dominant chemistries:


Synergistic Effect

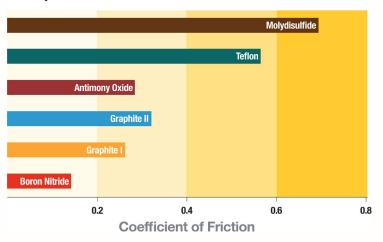
Friction Coefficient: Synergistic Effect with Lubricity Additives

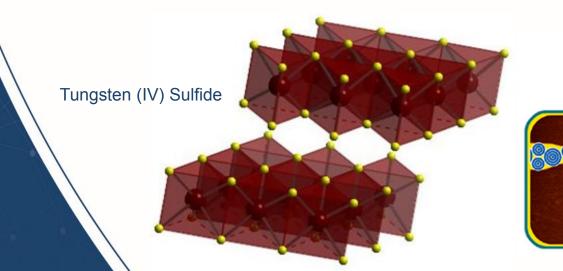
14

Activation Temperatures & Potential Alternatives


Chlorinated Paraffin Regulation Update

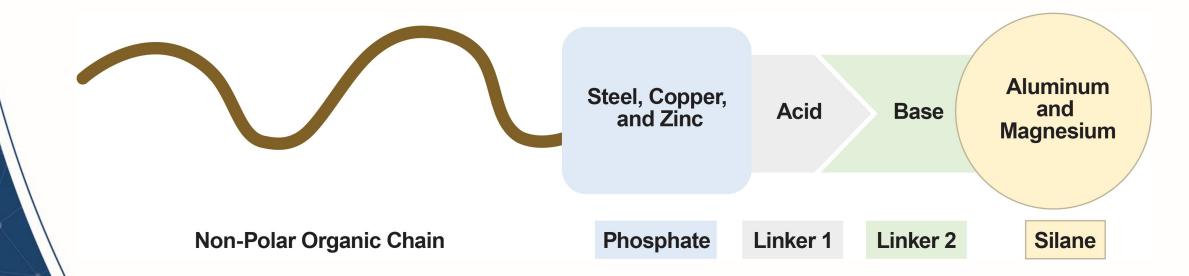
Chlorinated Paraffin Category	Carbon Chain Length		lorinated raffin Type	Chain Lengt
Short Chain Chlorinated Paraffin (SCCP)	C10–C13	SC	CP	C10-
Medium Chain Chlorinated Paraffin (MCCP)	C14–C17	MC	CCP	C14-
Long Chain Chlorinated Paraffin (LCCP)	C18–C30	LC	CP	C18-
Λ		vL	ССР	C21–


- SCCP (Short Chain CP, C10-C13): Carcinogen in 1994
- MCCP (Medium Chain CP, C14-17): Toxic to aquatic organism in 2005
- LCCP (Long Chain CP, C18-20): Nontoxic
- vLCCP (Very Long Chain CP, C21-30): Classified by EPA



Potential Alternatives: WS2 NPs

Comparison of Various Solid Lubricant Powders



Anti-Friction and Anti-Wear Oil Additive — Dual-Effect Active Material — Output Active Material

Potential Alternatives (New EP):

Phosphate/Silane Combo (PSiEP)

Property Control: Lubricity (Tapping Torque) EP Agent/Lubricity Enhancer (LE)/Phosphates (PP)

ID	BASE	EP1	LE1	РР	Torque on Steel	Torque on Aluminum
CP-1	97.0%	0.0%	0.0%	3.0%	198.6	171.6
CP-2	95.5%	1.4%	1.3%	1.8%	187.3	150.0
CP-3	97.0%	0.0%	3.0%	0.0%	212.0	167.3
CP-4	97.0%	1.5%	0.0%	1.5%	202.3	170.0
CP-5	94.0%	1.5%	1.5%	3.0%	180.3	109.6
CP-6	97.0%	3.0%	0.0%	0.0%	191.3	170.6
CP-7	96.0%	0.0%	2.0%	2.0%	192.6	180.3
CP-8	94.0%	0.0%	3.0%	3.0%	192.3	139.3
CP-9	94.0%	3.0%	0.0%	3.0%	185.3	129.6
CP-10	95.5%	1.5%	0.0%	3.0%	192.6	180.3
CP-11	94.0%	3.0%	3.0%	0.0%	171.6	109.0

Mixture DOE: 4 Continuous Factors

Baseline with CP (15%) and CFA (8%): 174 on Steel, 176.3 on Aluminum

Property Control: Lubricity (Tapping Torque) EP Agent/Lubricity Enhancer (LE)/Phosphates (PP)

Sorted Parameter Estimates				
Term	Estimate	Std. Error	T Ratio	
EP1/0.06	113.66347	2.489004	45.67	1
Phosphate/0.06	101.54931	2.823685	35.96	
Base-0.94)/0.06	73.121699	2.649316	27.60	
_E1/0.06	55.709536	3.063345	18.19	
Base*LE1	70.842787	6.577801	10.77	
EP1*LE1	66.749562	6.677797	10.00	
EP1*Phosphate	-54.68466	6.726463	-8.13	
_E1*Phosphate	47.710226	6.360353	7.50	
Base*EP1	-9.56205	6.574039	-1.45	
Base*Phosphate	1.3886672	6.642909	0.21	

DOE: Effect Analysis on Steel

New EP has a strong effect on Steel

Property Control: Lubricity (Tapping Torque) EP Agent/Lubricity Enhancer (LE)/Phosphates (PP)

Sorted Parameter Estimates					
Term	Estimate	Std. Error	T Ratio		Prob> t
(Base-0.94)/0.06	279.4033	25.23858	11.07		0.0574
EP1*LE1	493.13339	63.61571	7.75		0.0817
Base*Phosphate	-488.048	63.28335	-7.71		0.0821
Phosphate/0.06	168.44556	26.89969	6.26		0.1008
Base*EP1	-322.298	62.62726	-5.15		0.1222
EP1/0.06	88.306246	23.71137	3.72		0.1670
LE1*Phosphate	189.28869	60.59159	3.12		0.1972
Base*LE1	-116.2583	62.6631	-1.86		0. 3147
EP1*Phosphate	29.154167	64.07932	0.45		0.7282
LE1/0.06	-10.97553	29.18281	-0.38		0.7710

DOE: Effect Analysis on Aluminum

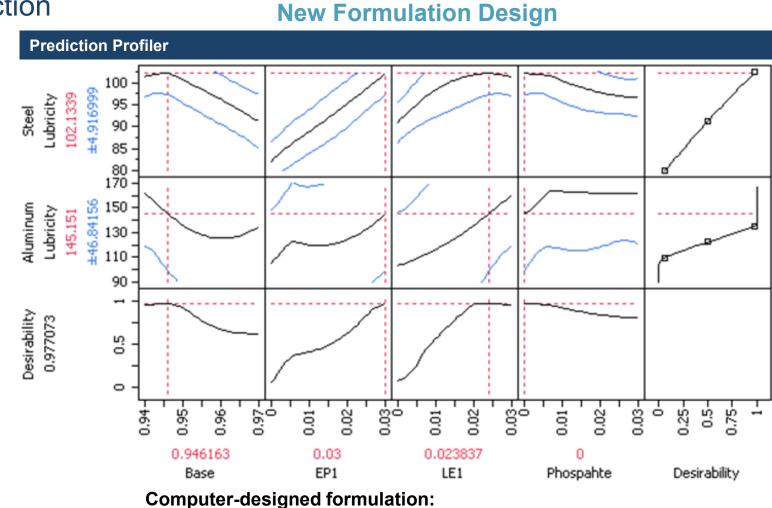
New EP may have synergistic effect with LE1 on Aluminum

Property Control:

EP vs. LE vs. PP vs. Lubricity

New EP has correlation with torque on Steel

0.97 0.95 0.93 EP1 0.03 0.01 -0.01 LE1 0.02 0 -0.02 Phospehte 0.03 - .. 0.01 -0.01 Lubricity 100 90 0 00000 80 Aluminum 140 100 ·. • 60 0.93 0.96 -0.01 0.02 -0.02 0.02 -0.01 0.03 80 90 100 60 100 160

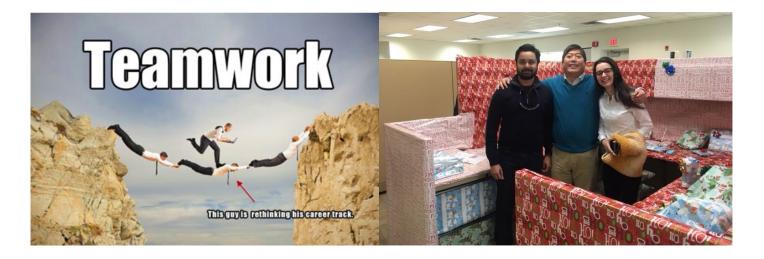

Multi-Variate Analysis (MVA)

New EP/LE may have correlation with torque on Aluminum

Property Control:

Optimal Formulation Prediction

159 (104% of Baseline) on Steel, 108 (169% of Baseline) on Aluminum


Summary

Multi-functional Phosphate/Silane Combo EP Technology

1. Proven Technology	Phosphates are used in zinc and iron pretreatment Silanes are used in aluminum pretreatment
2. Chlorinated Paraffin Free	Eco-friendly and regulation worry free
3. Minimum Phosphorus	Minimize microbial growth by reducing biological food sources
4. Multi-functional	Enhances lubricity as new EP agent in addition to the excellent corrosion/stain protection
5. Simple Preparation and Application	Based on general acid-base organic chemistry and simple drop-in application or minimal formulation adjustment

Acknowledgement

- 1. Mauro Beccaro, Vice President of Chemetall NA
- 2. Stefan Waidelich, Head of Technology Chemetall NA
- 3. Mubarik Chowdhry, Head of Global Technology
- 4. Cyle Ward, Metalworking Fluids Business Manager
- 5. Mark Fretz, Metalworking Fluids Product Manager
- 6. Joana Costa, Formulation Chemist
- 7. Joydeep Nath, Synthetic Chemist

Innovation correlates with Family, Colleagues, and People!

Chemistry is simple, but life is not. That's why I love chemistry. Polymer is long, but life is short. That's why I love polymer.

Thank you very much for your attention!