MAY 14-16, 2019

EASTERN STATES EXPOSITION WEST SPRINGFIELD, MA

easteconline.com

Official Media Partner

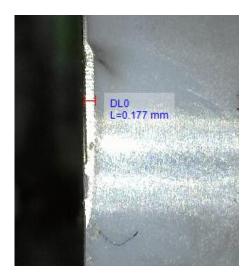
Machine learning classification for tool life modeling using production shop-floor data

Jaydeep Karandikar Lead Engineer GE Research Niskayuna, NY USA

Peng Li Senior Principal Scientist GE Research Niskayuna, NY USA

- Tool life is the most important limitation to machining productivity
- Tool life defined as time required for the tool to reach a pre-determine wear level

- Tool life in machining difficult to model and predict:
 - large number of influencing variables
 - stochastic/tool-to-tool performance variation



Flank wear on cutting insert

• Empirical model – example: Taylor-type tool life model

$$v^p f^q T = C$$

v - cutting speed

f - feed rate

T - tool life

C - dimensionless constant

Physics-based model – example: Usui's wear model

$$\frac{dw}{dt} = A\sigma_n v_{rel} e^{-\frac{B}{T}}$$

w – wear rate σ_n - contact pressure

 v_{rel} - relative velocity

T – absolute temperature

A, B – model constants

- Models require tool wear experiments to calibrate model coefficients
- Expensive and timeconsuming for large number of tool grade – material combinations

Idea:

- Consider production parts as tool wear experiments
- Model and predict tool life based on the data collected from the shop floor

Challenge:

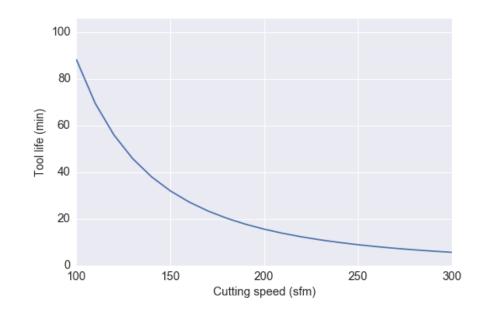
- Wear data observed when insert changed in production
- Single data point on tool wear vs cut time curve time for tool to reach pre-determined wear level not measured

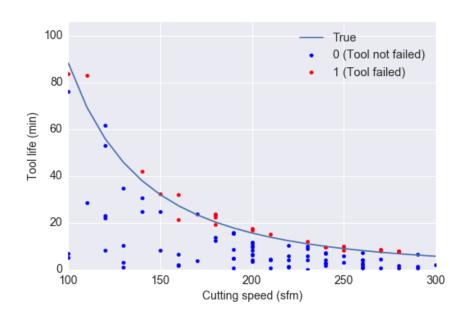
Solution:

- Tool life modeling as a classification problem (as opposed to regression) – use machine learning methods for classifying tool life
 - class 0 : tool not failed (wear less than the threshold value)
 - class 1: tool failed (wear greater than the threshold value)
- Tool life decision boundary separating the two classes as a function on input variables (cut time, and cutting speed)

Numerical Simulation

- Assume 'true' tool life curve as a function of cutting speed
- Generate random samples from the 'true' tool life curve
 - Class 0 sample time < 'true' tool life value
 - Class 1 sample time > than 'true' tool life value
- Add uncertainty to the samples non-separable data





Logistic classification

• Logistic classification - probability of an event given input data using the sigmoid function

$$p(x) = \frac{1}{1 + e^{-g(x)}} = \frac{e^{g(x)}}{1 + e^{g(x)}}$$

$$g(x) = a + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

p(x): probability of the event

g(x): linear model of k input variables, $x_1, x_2, ... x_k$

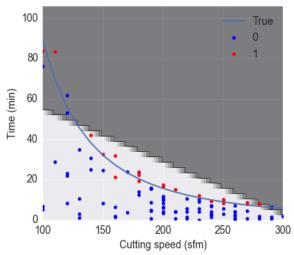
• Regularization factor C: small value denotes stronger regularization

Results - Logistic Classification

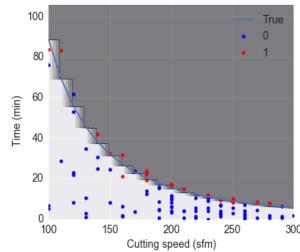
- Logistic linear classifier
- Poor accuracy cannot capture non-linear behavior of tool life as a function of cutting speed

 Non-linear classification enabled by log transformation of inputs – cut time, and tool life

	n = 25	n = 50	n = 100	n = 500
Logistic log- transform	0.842	0.860	0.874	0.880



Tool life boundary using logistic classification



Tool life boundary using logistic classification using log-transformation of inputs

Support Vector Machine (SVM) classification

- Support Vector Machines (SVM) hyperplane (or line in 2D) to maximize margin between classes
- SVM kernels:

Radial Basis Function (RBF)

$$K(x,z) = exp(-\gamma||x-z||^2)$$

Polynomial (Poly)

$$K(x,z) = (\gamma(x^Tz) + c)^d$$

K : kernel function

x, z : vectors in input space

c : model coefficient

d : order of the polynomial

 γ : kernel parameter

• Regularization factor C: penalty factor for misclassification for non-separable data

Results SVM RBF

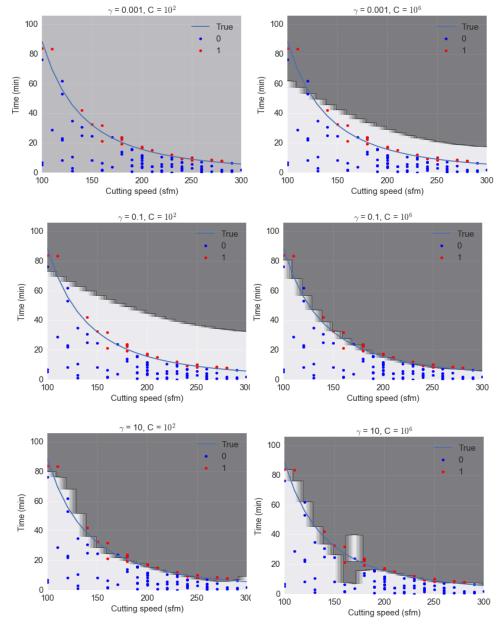
• Tune kernel parameter γ and regularization factor C to balance tradeoff between over-fitting and model simplicity

 γ – influence of single training data point

small γ – constrained model large γ – overfit data and model noise

C – misclassification penalty

Small *C* – maximize margin – linear model *Large C* – high penalty for misclassification – overfit data



Influence of (C, γ) on SVM RBF classification

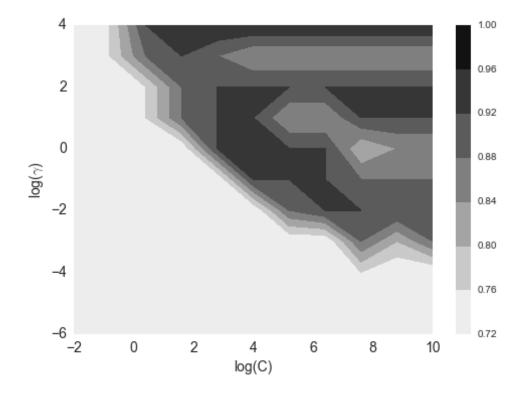
Results SVM RBF

Grid search for optimal γ and C selection to maximize accuracy

$$\gamma = 0.1$$

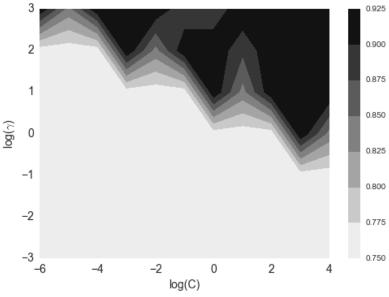
$$C = 1 \times 10^6$$

- Monte-Carlo simulation to check accuracy of SVM radial basis function model as a function of input parameters
- Model accuracy increases as a function of input points – converges to max. possible value 0.88 at 500 points



	n = 25	n = 50	n = 100	n = 500
RBF SVM	0.828	0.850	0.861	0.876

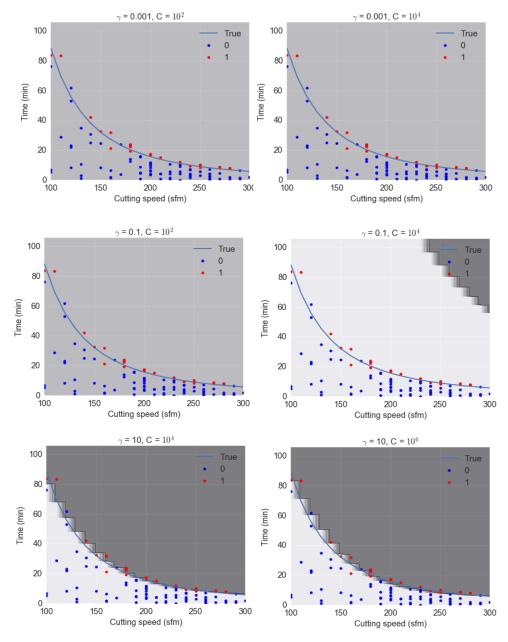
Results SVM Poly



SVM Poly parameters:

$$\gamma = 10$$
 $C = 10$

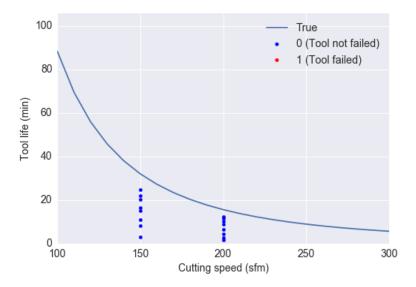
	n = 25	n = 50	n = 100	n = 500
RBF Poly	0.828	0.850	0.863	0.878



Influence of (C, γ) on SVM Poly classification

Sparse and imbalanced data

- Real life production data
 - small # of data points
 - clustered at few spindle speeds
 - few or no failure points (class 1)
- Prediction not possible using machine learning classification
- Need to generate synthetic data based on knowledge of tool wear and user experience



Sparse and imbalanced data

 Add failure data points for every non-failure data point by extrapolating cut time to threshold wear value and applying a factor of safety

Example:

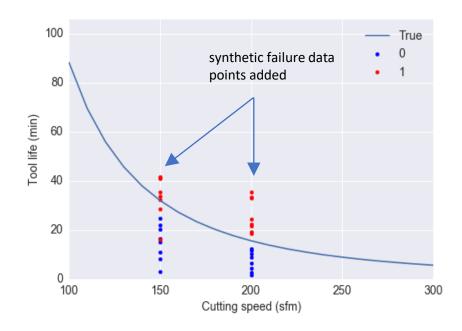
150 sfm, 16 minutes, wear 100 μm – Class 0

Threshold wear for tool failure - 300 μm

Linear extrapolation – 48 minutes

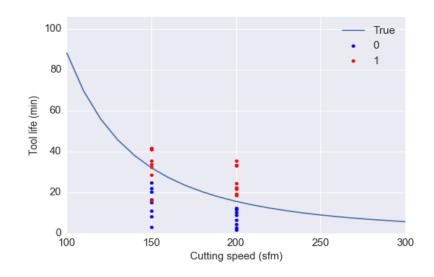
Factor of safety – 2

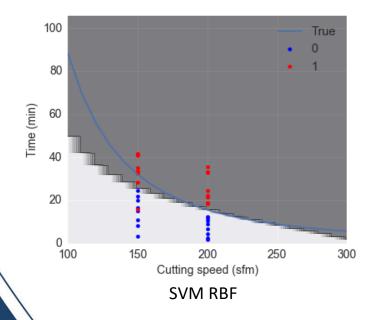
150 sfm, 96 minutes, wear > 300 μ m – Class 1

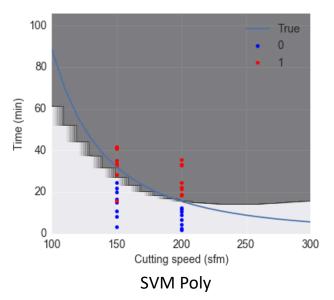


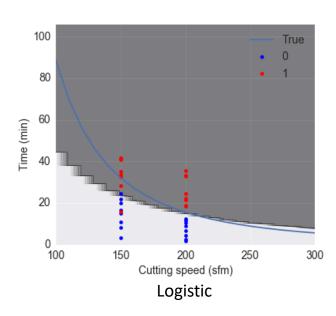
Sparse and imbalanced data

- Improved prediction by adding synthetic data points in the data range
- Model diverges from 'true' curve outside the data range









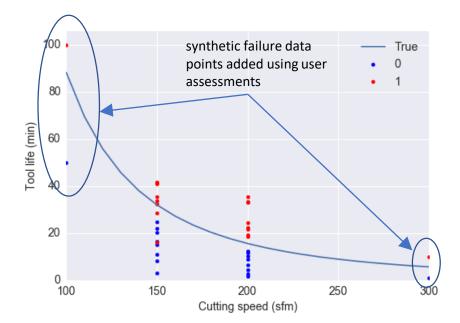
Sparse and imbalanced data

Add data at spindle speed extremes using user assessments for tool life

Example:

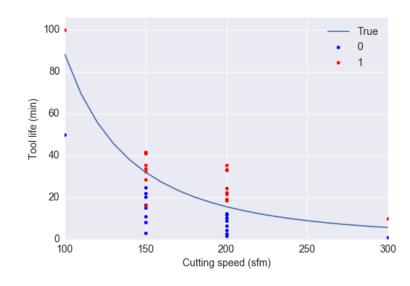
100 sfm, 50 minutes, wear < 300 μ m – Class 0 100 sfm, 100 minutes, wear > 300 μ m – Class 1

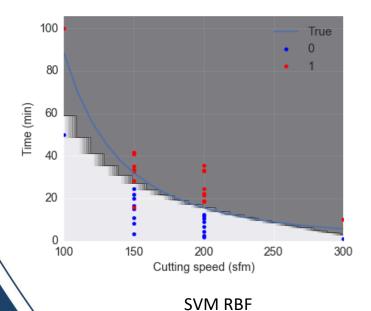
300 sfm, 1 minutes, wear < 300 μ m – Class 0 300 sfm, 10 minutes, wear > 300 μ m – Class 1

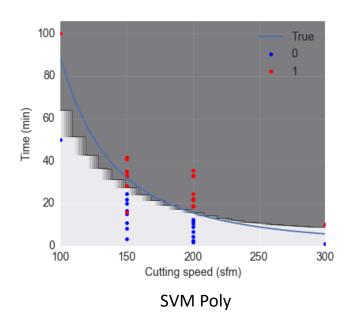


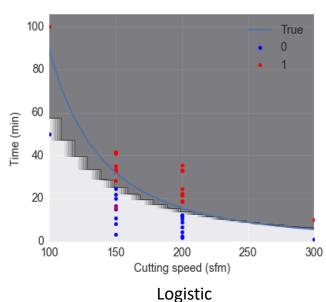
Sparse and imbalanced data

 Improved prediction by adding user assessment at the spindle speed minimum and maximum values









Conclusion

- Machine learning classification effective method of modelling tool life using production shop-floor tool wear data
- Data classified as:
 - class 0 : tool not failed (wear less than the threshold value)
 - class 1: tool failed (wear greater than the threshold value)
- Tool life modeled as classification boundary between class 0 and class 1 using machine learning methods
 - Support Vector Machines
 - Logistic