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Motivation

• Tool life is the most important limitation to machining 
productivity

• Tool life defined as time required for the tool to reach a 
pre-determine wear level

• Tool life in machining difficult to model and predict:
• large number of influencing variables
• stochastic/tool-to-tool performance variation

Flank wear on cutting insert



Motivation

• Empirical model – example: Taylor-type tool life model

𝑣𝑝𝑓𝑞𝑇 = 𝐶

𝑣 - cutting speed
𝑓 - feed rate 
𝑇 - tool life
𝐶 - dimensionless constant

• Physics-based model – example: Usui’s wear model

𝑑𝑤

𝑑𝑡
= 𝐴𝜎𝑛𝑣𝑟𝑒𝑙𝑒

−
𝐵
𝑇

𝑤 – wear rate
𝜎𝑛- contact pressure 
𝑣𝑟𝑒𝑙 - relative velocity 
𝑇 – absolute temperature 
𝐴, 𝐵 – model constants

• Models require tool wear 
experiments to calibrate 
model coefficients

• Expensive and time-
consuming for large number 
of tool grade – material 
combinations



Motivation

Idea:

• Consider production parts as tool wear experiments 

• Model and predict tool life based on the data collected 
from the shop floor

Challenge:

• Wear data observed when insert changed in production

• Single data point on tool wear vs cut time curve – time 
for tool to reach pre-determined wear level not 
measured



Motivation

Solution: 

• Tool life modeling as a classification problem (as 
opposed to regression) – use machine learning methods 
for classifying tool life

o class 0 : tool not failed (wear less than the 
threshold value)

o class 1: tool failed (wear greater than the threshold 
value)

• Tool life – decision boundary separating the two classes 
as a function on input variables (cut time, and cutting 
speed)



Numerical Simulation

• Assume ‘true’ tool life curve as a function of cutting speed

• Generate random samples from the ‘true’ tool life curve 
o Class 0 – sample time < ‘true’ tool life value
o Class 1 – sample time > than ‘true’ tool life value

• Add uncertainty to the samples – non-separable data



Logistic classification 

• Logistic classification - probability of an event given input data using the sigmoid function

p(x) : probability of the event
g(x) : linear model of k input variables, x1, x2, … xk

• Regularization factor C : small value denotes stronger regularization

𝑝 𝑥 =
1

1 + 𝑒 ሻ−𝑔(𝑥
=

𝑒 ሻ𝑔(𝑥

1 + 𝑒 ሻ𝑔(𝑥

𝑔 𝑥 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑛𝑥𝑛



Results - Logistic Classification

• Logistic  - linear classifier

• Poor accuracy – cannot capture non-linear behavior of 
tool life as a function of cutting speed

• Non-linear classification enabled by log transformation 
of inputs – cut time, and tool life

Tool life boundary using logistic classification 

Tool life boundary using logistic classification 
using log-transformation of inputs 

n = 25 n = 50 n = 100 n = 500

Logistic log-
transform

0.842 0.860 0.874 0.880



Support Vector Machine (SVM) classification 

• Support Vector Machines (SVM) – hyperplane (or line in 2D) to maximize margin between 
classes

• SVM kernels:

𝐾 𝑥, 𝑧 = 𝑒𝑥𝑝 −𝛾| 𝑥 − 𝑧 |2

𝐾 𝑥, 𝑧 = 𝛾(𝑥𝑇𝑧ሻ + 𝑐 𝑑

Radial Basis Function (RBF)

Polynomial (Poly)

K : kernel function
x, z : vectors in input space
c : model coefficient
d : order of the polynomial
𝛾 : kernel parameter

• Regularization factor C : penalty factor for misclassification for non-separable data



Results SVM RBF

• Tune kernel parameter 𝛾 and 
regularization factor C to balance trade-
off between over-fitting and model 
simplicity

𝛾 – influence of single training data point

small 𝛾 – constrained model
large 𝛾 – overfit data and model noise

C – misclassification penalty

Small C – maximize margin – linear model
Large C – high penalty for misclassification 
– overfit data

Influence of (C, 𝛾) on SVM RBF classification



Results SVM RBF

• Grid search for optimal 𝛾 and C 
selection to maximize accuracy

𝛾 = 0.1
C = 1×106

• Monte-Carlo simulation to check 
accuracy of SVM radial basis function 
model as a function of input parameters

• Model accuracy increases as a function 
of input points – converges to max. 
possible value 0.88 at 500 points

n = 25 n = 50 n = 100 n = 500

RBF SVM 0.828 0.850 0.861 0.876



Results SVM Poly

SVM Poly parameters:
𝛾 = 10
C = 10

Influence of (C, 𝛾) on SVM Poly classification

n = 25 n = 50 n = 100 n = 500

RBF Poly 0.828 0.850 0.863 0.878



Sparse and imbalanced data

• Real life production data –
• small # of data points
• clustered at few spindle speeds
• few or no failure points (class 1)

• Prediction not possible using machine learning 
classification

• Need to generate synthetic data based on knowledge 
of tool wear and user experience



Sparse and imbalanced data

• Add failure data points for every non-failure 
data point by extrapolating cut time to 
threshold wear value and applying a factor 
of safety

Example: 

150 sfm, 16 minutes, wear 100 µm – Class 0

Threshold wear for tool failure - 300 µm 

Linear extrapolation – 48 minutes

Factor of safety – 2

150 sfm, 96 minutes, wear > 300 µm – Class 1

synthetic failure data 
points added



Sparse and imbalanced data

• Improved prediction by adding synthetic data 
points in the data range

• Model diverges from ‘true’ curve outside the 
data range

SVM RBF SVM Poly Logistic



Sparse and imbalanced data

• Add data at spindle speed extremes using user 
assessments for tool life

Example: 

100 sfm, 50 minutes, wear < 300 µm – Class 0
100 sfm, 100 minutes, wear > 300 µm – Class 1

300 sfm, 1 minutes, wear < 300 µm – Class 0
300 sfm, 10 minutes, wear > 300 µm – Class 1

synthetic failure data 
points added using user 
assessments



Sparse and imbalanced data

• Improved prediction by adding user assessment 
at the spindle speed minimum and maximum 
values

SVM RBF SVM Poly Logistic



Conclusion

• Machine learning classification – effective method of 
modelling tool life using production shop-floor tool wear 
data

• Data classified as:

o class 0 : tool not failed (wear less than the threshold 
value)

o class 1: tool failed (wear greater than the threshold 
value)

• Tool life modeled as classification boundary between class 0 
and class 1 using machine learning methods
• Support Vector Machines
• Logistic


