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Motivation

e Tool life is the most important limitation to machining
productivity

* Tool life defined as time required for the tool to reach a
pre-determine wear level

o T : Flank tting insert
* Tool life in machining difficult to model and predict: anicwear on citting Inser

* large number of influencing variables
» stochastic/tool-to-tool performance variation
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Motivation

* Empirical model — example: Taylor-type tool life model
VvPfIT = C

v - cutting speed .
f - feed rate

T - tool life

C - dimensionless constant

* Physics-based model — example: Usui’s wear model

dw B

W — wear rate

0n,- contact pressure

Vyep - relative velocity

T — absolute temperature

A, B — model constants

Models require tool wear
experiments to calibrate
model coefficients

Expensive and time-
consuming for large number
of tool grade — material
combinations



eastec

Motivation

ldea:

* Consider production parts as tool wear experiments

* Model and predict tool life based on the data collected
from the shop floor

Challenge:

* Wear data observed when insert changed in production

* Single data point on tool wear vs cut time curve — time

for tool to reach pre-determined wear level not
measured
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Motivation

Solution:

* Tool life modeling as a classification problem (as
opposed to regression) — use machine learning methods
for classifying tool life

o class O : tool not failed (wear less than the
threshold value)

o class 1: tool failed (wear greater than the threshold
value)

* Tool life — decision boundary separating the two classes
as a function on input variables (cut time, and cutting
speed)
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Numerical Simulation

* Assume ‘true’ tool life curve as a function of cutting speed

* Generate random samples from the ‘true’ tool life curve
o Class 0 —sample time < ‘true’ tool life value
o Class 1 —sample time > than ‘true’ tool life value

e Add uncertainty to the samples — non-separable data

100 100 —— True
s 0 (Tool not failed)

« 1 (Tool failed)

Tool life (min)
Tool life (min)

0
100 150 200 250 300
Cutting speed (sfm)

Cutting speed (sfm)
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Logistic classification

* Logistic classification - probability of an event given input data using the sigmoid function

1 eg(x)
1+e9®  1+e9®

p(x) =

gx) =a+ bix; + byxy + -+ byxy,

p(x) : probability of the event
g(x) : linear model of k input variables, x;, x,, ... X,

* Regularization factor C : small value denotes stronger regularization
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Results - Logistic Classification

Logistic - linear classifier

Poor accuracy — cannot capture non-linear behavior of
tool life as a function of cutting speed

Non-linear classification enabled by log transformation
of inputs — cut time, and tool life

n =25 n =50 n =100 n =500

Logistic log- | 0.842 0.860 0.874 0.880
transform

Time (min)

L]
L] « 1 2 [l - I

0 . Tl

100 150 200 250 300

Cutting speed (sfm)

Tool life boundary using logistic classification

* e . « 8 8 3 o .
0 H L . . 0 . i I « 8 0
100 150 200 250 300
Cutting speed (sfm)
Tool life boundary using logistic classification

using log-transformation of inputs
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Support Vector Machine (SVM) classification

* Support Vector Machines (SVM) — hyperplane (or line in 2D) to maximize margin between
classes

e SVM kernels:

Radial Basis Function (RBF) K(x,z) = exp(—=y|lx — z||?)

Polynomial (Poly) K(x,z) = (y(xT2) + c)“

K : kernel function

X, Z : vectors in input space
¢ : model coefficient

d : order of the polynomial
y : kernel parameter

* Regularization factor C : penalty factor for misclassification for non-separable data
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Results SVM RBF

* Tune kernel parameter y and
regularization factor C to balance trade-
off between over-fitting and model
simplicity

y —influence of single training data point

small ¥ — constrained model
large y — overfit data and model noise

C — misclassification penalty
Small C — maximize margin — linear model

Large C — high penalty for misclassification
— overfit data

Time (min)

Time (min)

150

150

+=0.001, C =10?

+=0.001, C =10°

L]
200 250 300 100 150 200 250
Cutting speed (sfm) Cutting speed (sfm)
+=0.1,C=10? +=0.1,C=10°

.
.

RN . . c
200 250 30( 100 150 200 250

Cutting speed (sfm) Cutting speed (sfm)

7 =10.C=10° +=10,C = 10°

]
200 250 30C 0

L]
100 150 200 230

Cutting speed (sfm) Cutting speed (sfm)

Influence of (C, y) on SVM RBF classification
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Results SVM RBF

Grid search for optimal y and C
selection to maximize accuracy

y =0.1
C=1x106°6

Monte-Carlo simulation to check
accuracy of SVM radial basis function
model as a function of input parameters

Model accuracy increases as a function
of input points — converges to max.
possible value 0.88 at 500 points

log(~)

-2
-4

076

-B 072

-2 2 4 8 10
log(C)
n =25 n =50 n =100 n =500
RBF SVM 0.828 0.850 0.861 0.876
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Results SVM Poly

6 4 2 0
log(C)

y =10
C=10

SVM Poly parameters:

0825

0.800

0BTS

0850

0Be25

0800

Q7T

0750

Time (min)

Time (min)

n =100

n =500

Time (min)

RBF Poly | 0.828 | 0.850

0.863

0.878

+=0.001, C = 10°

Cutting speed (sfm)

+=0.1,C =102

Cutting speed (sfm)

=10, C = 10!

Cutting speed (sfm)

Time (min)

+=0.001, C = 10!

Cutting speed (sfm)

+=0.1,C = 10!

Cutting speed (sfm)

+=10,C = 10°

Cutting speed (sfm)

Influence of (C, ¥) on SVM Poly classification
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Sparse and imbalanced data

Real life production data —
* small # of data points
* clustered at few spindle speeds
* few or no failure points (class 1)

Prediction not possible using machine learning
classification

Need to generate synthetic data based on knowledge
of tool wear and user experience

True

s 0 (Tool not failed)
1 (Tool failed)

Tool life {(min)

D L]
100 150 200 250 300
Cutting speed (sfm)
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Sparse and imbalanced data

* Add failure data points for every non-failure
data point by extrapolating cut time to
threshold wear value and applying a factor
of safety

Example:

150 sfm, 16 minutes, wear 100 pum — Class 0

Threshold wear for tool failure - 300 um

Linear extrapolation — 48 minutes

Factor of safety — 2

150 sfm, 96 minutes, wear > 300 um — Class 1

Tool life (min)

100

150

synthetic failure data
points added

200
Cutting speed (sfm)

250

— True

300
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Sparse and imbalanced data -0

* Improved prediction by adding synthetic data

£
points in the data range 2
g ‘ |
* Model diverges from ‘true’ curve outside the . : :
data range : !

0
100 150 200 250 300
Cutting speed (sfm)

0 0
150 200 250 300 e 0 Cuttin :_0 ged (sfm) = 0 e 0 Cuttin :_0 ged (sfm) = 0
Cutting speed (sfm) 95 ’ p :
SVM Poly Logistic

SVM RBF
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Sparse and imbalanced data

* Add data at spindle speed extremes using user
assessments for tool life

Example:

100 sfm, 50 minutes, wear < 300 um — Class 0
100 sfm, 100 minutes, wear > 300 um — Class 1

300 sfm, 1 minutes, wear < 300 pm — Class 0
300 sfm, 10 minutes, wear > 300 um — Class 1

synthetic failure data —— True
points added using user
assessments

Tool life (min)

-
]
.
J
i
250

D L]
100 150 200
Cutting speed (sfm)
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Sparse and imbalanced data

100 » —_— True

e Improved prediction by adding user assessment
at the spindle speed minimum and maximum

values

Tool life (min)

0 .
100 150 200 250 300
Cutting speed (sfm)

0
300 100 150 200 250 300
Cutting speed (sfm)

200
Cutting speed (sfm)

SVM Poly

200
Cutting speed (sfm)
Logistic

SVM RBF
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Conclusion

* Machine learning classification — effective method of
modelling tool life using production shop-floor tool wear
data

e Data classified as:

o class O : tool not failed (wear less than the threshold
value)

o class 1: tool failed (wear greater than the threshold
value)

* Tool life modeled as classification boundary between class 0
and class 1 using machine learning methods
e Support Vector Machines
* Logistic



